
Level-2 Milestone 3504: 
Scalable Applications 
Preparations and Outreach for 
the Sequoia ID (Dawn)

Milestone Report for NNSA HQ

LLNL-TR-440586

Prepared by W. Scott Futral, John Gyllenhaal, 
and Richard Hedges
June 25, 2010



This document was prepared as an account of work sponsored by an agency of the United 
States government. Neither the United States government nor Lawrence Livermore 
National Security, LLC, nor any of their employees makes any warranty, expressed or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents that 
its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States government or Lawrence Livermore National Security, 
LLC. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States government or Lawrence Livermore National Security, 
LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence 
Livermore National Laboratory under Contract DE-AC52-07NA27344.



i

Contents

Introduction.....................................................................................................................1
Sequoia Architecture Challenges .....................................................................................1

Code Team Outreach Activities .......................................................................................2
Applications Testing and Recommendations ...................................................................3

Attachment 1: Milestone Definition Text.........................................................................4
Attachment 2: Handoff Letter..........................................................................................5

Attachment 3: The Dawn System Architecture ................................................................6
Attachment 4: KULL Sequoia ID Port and Initial Performance Characterization .............7

Attachment 5: I/O Performance Analysis and Tuning for Dawn ....................................13



1

Introduction

This report documents LLNL SAP project activities in anticipation of the ASC Sequoia 
system, ASC L2 milestone 3504: Scalable Applications Preparations and Outreach for the 
Sequoia ID (Dawn), due June 30, 2010. The full text of the milestone is included in 
Attachment 1. The description of milestone is:

The SAP effort will develop the knowledge base, documentation, and 
training to provide ASC code teams with support for utilization of the 
Sequoia ID (Dawn). SAP will actively engage tri-lab code teams to 
address their needs in porting codes to the Sequoia ID (Dawn), exploring 
options for multi-core utilization, characterizing performance issues for 
the codes. For FY10, tri-lab code teams will be surveyed for needs. One 
or more multi-physics codes will be engaged to characterize the Sequoia 
ID (Dawn) performance, analyze bottlenecks and load balance issues, 
and to develop strategies for improving performance targeting the 
Sequoia system.

The milestone was completed on June 25, 2010 when a summary report of porting and 
performance characterization for the KULL code was presented to the team lead for the
code project. The following sections describe the Sequoia system architecture challenges, 
the project outreach activities, and the applications testing and evaluation done for this 
milestone.

A letter certifying that the KULL code team was engaged to characterize their code 
performance on the Sequoia ID system (Dawn) is included as Attachment 2. An overview 
of the Dawn system hardware is included as Attachment 3. The applications testing 
details are provided in Attachments 4 and 5.

Sequoia Architecture Challenges

The Sequoia system scheduled for late CY2011 poses a number of challenges for 
applications to achieve high performance. In addition to the MPI scalability challenges 
posed by previous systems, this system will extend scalability requirements to over 1.5 
million cores. The individual nodes of the system will feature larger numbers of 
processors and virtual threads of execution, which will necessitate greater use of 
programming techniques such as OpenMP or Pthreads to exploit the full capability of the 
machine. Additional challenges arise from the unique operating system for the BlueGene 
systems, featuring a Linux microkernal on the compute nodes of the system. The I/O and 
network infrastructure on Dawn proved to be significant for program startup and 



2

performance of codes in a production setting and will need to be considered in planning 
by code developers for Sequoia. Attachment 3 provides an overview of the current Dawn 
system architecture.

Code Team Outreach Activities

The Scalable Applications Preparations (SAP) team developed the knowledge base, 
documentation, and training to provide ASC code teams with support for utilization of 
the Sequoia ID system. The following list is incomplete, but it clearly demonstrates the 
intent of this portion of the milestone requirement was more than satisfied:

 Workshops were held to introduce users to the Dawn system. These were 
conducted by Blaise Barney, with the assistance of Tom Spelce and Richard 
Hedges, and were held at the LANL and Sandia sites in early April 2010.

 Interview meetings were conducted with many major code teams over the past 
year to discuss plans for Dawn and Sequoia and to assess needs of the teams in 
preparing for those platforms. Meetings with LLNL teams included KULL, Ares, 
ALE3D, HYDRA, ParaDIS, and DDCMD. Meetings with Sandia teams included 
Charon (hosted at Livermore), Sierra, Alegra, and CTH (held at Sandia). LANL 
users Mark Petersen and Daniel Livescu meet with SAP team members to discuss 
their code requirements for a major calculation targeting Dawn.

 The Dawn User Forum meeting is conducted on the third Thursday of each month
and has been very successful in engaging participation from the user community.

 A Web page (https://computing.llnl.gov/code/sap/) was established for sharing 
information and documentation, and as an archive of Dawn User Forum 
presentations.

 Dawn users are regularly assisted with issues related to compilers, building codes, 
performance measurement, scalability, memory utilization, and I/O performance.

 Novel Sequoia threading technologies, along with IBM simulators of the Sequoia 
nodes, are used to evaluate representative code samples from the Sequoia 
benchmarks, user codes, and newly developed benchmarks in order to gain 
additional understanding of multi-core node performance issues.

 Significant improvements for performance in code runtimes, I/O, and startup were 
achieved through close engagement of the SAP team with code teams. These 
interactions are further detailed in other sections of this report.



3

Applications Testing and Recommendations

While multiple codes teams were assisted by the SAP effort, particular attention was 
focused on the KULL project as the multi-physics code to be engaged for 
characterization of performance on the Sequoia ID (Dawn) system. The resulting report is 
presented as Attachment 3.
Additionally, extensive and highly successful efforts in addressing I/O performance were 
realized by the SAP team working with the Ares code team and the SILO/HDF5 team. 
This work is reported in Attachment 4.



4

Attachment 1: Milestone Definition Text

Milestone (ID#): Scalable applications preparations and outreach for the Sequoia ID (Dawn)

Level: 2 Fiscal Year: FY10 DOE Area/Campaign: ASC

Completion Date: June 30, 2010

ASC nWBS Subprogram: CSSE

Participating Sites: LLNL

Participating Programs/Campaigns: ASC

Description: The SAP effort will develop the knowledge base, documentation, and training to 
provide ASC code teams with support for utilization of the Sequoia ID (Dawn). SAP will actively 
engage tri-lab code teams to address their needs in porting codes to the Sequoia ID (Dawn), 
exploring options for multi-core utilization, characterizing performance issues for the codes. For 
FY10, tri-lab code teams will be surveyed for needs. One or more multi-physics codes will be 
engaged to characterize the Sequoia ID (Dawn) performance, analyze bottlenecks and load 
balance issues, and to develop strategies for improving performance targeting the Sequoia system.

Completion Criteria: A report covering the performance findings, and recommended techniques 
and strategies for the codes studied will be prepared.

Customer: ASC Integrated Codes Program

Milestone Certification Method: 
Professional documentation, such as a report or a set of viewgraphs with a written summary, will 
be prepared as a record of milestone completion. 
A “handoff” letter accompanying the report about the project findings and recommendations to 
the IC program will be document.

Supporting Resources: ASC the Sequoia ID (Dawn) system

Supporting Milestones: 

Program Title Due Date

N/A N/A N/A

Codes/Simulation Tools Employed: The Sequoia ID (Dawn) software environment and IBM 
Sequoia simulator

Contribution to the ASC Program: More effective use of Sequoia computer system

Contribution to Stockpile Stewardship: More effective use of Sequoia computer system

No. Risk Description
Risk Assessment (low, medium, high)

Consequence Likelihood Exposure

1 No access to IBM Sequoia simulator Low Medium Low



5

Attachment 2: Handoff Letter



6

Attachment 3: The Dawn System Architecture

The Dawn machine is an IBM BlueGene/P system composed of 36 compute racks. Each 
compute rack has 1024 compute nodes and 8 I/O nodes. Compute nodes and I/O nodes 
have four PowerPC 450 processor cores and a total of 4 GB of memory. The system has a 
total of 147,456 compute cores, 288 I/O nodes, 148 TB total memory, and 501 TF peak 
performance.

End-user access to the system is via the Front End Nodes (FENs). Dawn has 14 FENs,
each with four Power6 processors running at 4 GHz with 8 GB of RAM. The FENs are 
used to compile, run, and monitor jobs, and access file system resources.
Each of the 288 I/O nodes provides I/O services for 128 compute nodes. The I/O nodes 
mount the NFS and Lustre file systems. The Lustre file system deployed along with 
Dawn is 2.3 PB in size and delivers a peak of 60 GB/s performance.

Partly as a result of I/O analysis done in this SAP milestone effort, a decision was made 
to expand the number of I/O nodes to 576. This effort is to be completed in July 2010.

Dawn System Architecture

E-net

Core

8 x 36

10 Gb

16

1 GbE

Dawn Core 

9  x 4 BG/P Racks
144

1 GbE

12

1 GbE

12

10 Gb

2

1 GbE

2

10 Gb

Service

1 P6-550

Local Disk

DS4800

Login

1 BC-H

14 JS22

DawnHTC

512 CN, 1 LN

2

1 GbE

1

10 GbE

Service

1 P6-520

4

1 GbE



7

Attachment 4: KULL Sequoia ID Port and Initial 
Performance Characterization

(June 2009–June 2010)
The KULL port to the Sequoia ID system (Dawn, a BG/P system) began in June 2009 
with the KULL team’s reproduction of IBM’s port of Python to Dawn. KULL is layered 
on top of Python and the Sequoia contract had explicit language about Python support 
due to porting difficulties on other lightweight kernel systems (like BG/L and RedStorm). 
IBM provided explicit (and quite counterintuitive) instructions on how to compile 
Python, and this knowledge was folded into the KULL build system.

After the SAP team provided guidance on best practices for BG/P, the KULL team then 
spent several weeks porting the third-party libraries their code uses to Dawn.   The KULL 
team found some of the new technology provided to simplify configuring third-party 
software (the autosubmit feature for serial executables to the HTC cluster) to be unstable.   
After tracking down and fixing several bugs, the SAP team and LC worked together to 
implement regular automated testing of these new features so that they could be fixed 
before the users encountered them. 
About this time (July 2009), another large C++ code (Charon, from Sandia) started 
having serious compiler problems on Dawn, and the KULL team decided to temporarily 
suspend their porting effort while the SAP team worked to resolve Charon problems. This 
strategy was successful in that most of the problems we encountered and solved for 
Charon (by September 2009) were also encountered and quickly solved for KULL when 
their porting effort resumed in October 2009. KULL very quickly (and successfully)
generated an executable using the Charon work-arounds.
The most significant work-around that KULL leveraged from the Charon work is that the 
GNU linker does not, by default, support executables larger than 16 MB. The GNU linker 
(ld) is used by both the IBM compiler and the GNU compiler, so both of the available 
Dawn compilers suffer from the executable size limitation. Charon was the first Dawn 
executable that encountered this problem (exe size > 70 MB). The SAP team researched 
this issue and found a well-hidden GNU option (-Wl,--relax) that allowed executables 
larger than 16 MB to link. Charon was now able to run using the IBM compiler after 
linking with -Wl,--relax.
Using the same large executable work-around -Wl,--relax, KULL (~900 MB) was now 
able to compile and successfully link. Unfortunately, the generated KULL executable 
segmentation faulted before main in C++ class initialization code. Early investigations 
pointed to a KULL initialization order dependence issue for the problems (and there were
thousands of C++ class initializations before main), and three difficult months were spent 
unsuccessfully trying to discover how to solve the problem. In parallel, we worked on 
generating a non-export-controlled reproducer for this problem to give to IBM so they 



8

could help with the issue. Our many unsuccessful attempts to reproduce again reinforced 
that it was likely something KULL was doing to caused the failure.

In January 2010, we changed focus to aggressively cutting code out of KULL until the 
problem went away in order to discover what source was responsible for the 
segmentation fault before main. By February 2010, the KULL team found that removing 
90% of the code resolved the problem, but it didn’t appear to matter which 10% was kept. 
In mid March, a non-export-controlled reproducer using just four KULL-like global 
variable declarations linked with 100 MB of automatically generated filler code was 
produced through the joint effort of the KULL and SAP teams. After analysis by the 
GNU linker maintainer, it was found in April 2010 to be a bug in GNU ld that randomly 
corrupted some function call addresses when -Wl,--relax was used with executables or 
shared libraries bigger than 16 MB. All the segfault problems were caused by a GNU
linker bug triggered by the large size of the KULL executable and the link mode used to 
support the use of Python.

The work-around to the GNU linker issue was to limit executable and shared library size
to < 16MB. KULL is around 900 MB, and the easiest way to meet this requirement was 
to use the “developer” build target for KULL which generates many (~1000) small 
shared objects. This developer build target maximizes flexibility in the code development 
cycle and is regularly used on LLNL linux clusters. The Pynamic benchmark actually 
was designed to model KULL’s shared library usage characteristics with the developer 
build target. IBM had analyzed Pynamic on Dawn for the Sequoia contract and although 
IBM had demonstrated it would work, they also found that Dawn was definitely not 
optimized for this case and strongly recommended against using this build target. Now, 
this build target appeared to be the only one that would work for KULL. It is worth 
mentioning that the developer target is actually a desired target for the KULL team if it 
can be made to work fast on Sequoia (and beyond), because it could allow them to only 
load the necessary code dynamically, thus dramatically shrinking memory footprint. The 
current “best” available solution of generating different executables for each mesh type 
(and not optimizing for the physics used) is both clunky for the users and is not as 
memory size optimized as a pure shared library version could be made. This feedback has 
been given to the IBM Sequoia team.
Building and linking KULL with the developer build target resolved the segmentation 
fault before main issue and allowed the KULL team to start correctness and scalability 
testing. The regression tests showed that C++ exception handling was broken, and this 
was traced to another GNU ld issue with a simple work-around. With the C++ exceptions 
fixed, the KULL team was able to successfully run 600+ regression tests, and the causes 
of the failing tests were quickly diagnosed.
The KULL team then ran a 2k MPI task multi-physics input (on 2k nodes) that exhibited 
about a 5X slowdown when compared to the same 2k run on Purple. This 5X slowdown 
actually met expectations because Purple processors have a ~2.5X faster clock and can 
issue 5 instructions per cycle (compared to 1 for Dawn). Another multi-physics code also 
saw the same 5X slowdown at 2k, so KULL’s per processor performance on the Dawn 
processor did not raise red flags (although we continue to look at improving it).
Experiments showed that just loading the debug KULL executable and all those shared 
libraries was consuming almost 2 GB of memory, thus limiting Dawn runs to 1 task per 



9

4 GB node. At 2k tasks, loading the executable with 1000 shared libraries took a 
significant amount of time (~ 1 hour), and we became very concerned about load time at 
scale.
The KULL team then ran a 16k MPI task input on 16k nodes (1 MPI task per node), and 
the initial serious scaling issues on Dawn became evident. The executable load time (with 
the 1000 shared libraries) jumped to 10.6 hours, just to get to main(). Importing KULL 
into Python took an additional 1.6 hours. Simply loading a 700 KB mesh file into each 
task took over 10 hours (before the job was killed, so it probably would have taken 
longer). These initial startup times at 16k MPI tasks are shown in Figure 1 under the 
“Original executable,” and the most recent “Tuned executable” performance numbers (as 
of June 22, 2010) are also shown for comparison. The SAP team worked with the Dawn 
system administrator during this run to obtain diagnostics to determine the cause of this 
huge startup slowdown.

The primary cause of the 10.6 hour executable load time was the startup code making 
about 300,000,000 unnecessary open() calls to a weak, untuned NFS server (used 
primarily for Dawn’s compiler and MPI libraries). The POSIX standard prohibits caching 
of open() calls to non-existent files (because it could have been recently created); thus,
the I/O nodes on Dawn had to pass every call to the NFS server. The default shared 
library search path as defined by the compiler effectively made the startup code always
look in 20 places for each of the 1000 shared libraries that didn’t exist before looking in 
the proper place.

The SAP team, working with the KULL team, devised a set of scripts to pack the 1000 
shared libraries into ~ 40 shared libraries, each still less than 16 MB. Only about 300 MB 
of the shared libraries were actually required for this specific input, so we also eliminated 

638.13

96.52

646.38

18.6 28.12 2.15
0

100

200

300

400

500

600

700

Executable Load Python import/binding Input Mesh loadSt
ar

t 
u

p
 t

im
e 

(i
n

 m
in

u
te

s)

Phase of  KULL startup
Figure 1: Kull Startup Scaling

KULL Dawn Startup time at 16k MPI task 

Original executable

Tuned executable      
(as of June 22, 2010)



10

the other 600 MB of shared libraries. Lastly, the compiler link line was carefully 
constructed so that only one directory, holding all the required shared libraries, was 
searched by the startup code. This single shared library directory was put on a powerful 
NFS system with about 10X the bandwidth of the originally file server. With the current 
16 MB constraint (due to the GNU ld bug still being worked by IBM), the executable 
load has been made as optimal as possible without eliminating unused physics code for 
this particular input. 
The optimized executable load now takes 18.6 minutes at 16k tasks (versus 10.6 hours) 
and 37.1 minutes at 32k tasks (Figure 2). It is hoped that this time can be further reduced 
once the GNU ld bug is fixed and most of the KULL code can be put into the main 
executable. BG/P has an optimized executable launching mechanism that is not currently 
being well utilized because almost all the KULL code is in shared libraries.

The long Python import time of 1.6 hours is harder to reduce. It is also a problem caused 
by about 65,000,000 unnecessary open calls as Python searches for various .py, .pyc, .so, 
etc., files during the import. (It just happened to slam a much more powerful NFS server 
than the executable load.) The SAP team looked at Python options and found a way for 
many of the Python files to be combined into a “zip” file. This use of the zip file removed 
only a quarter of the unnecessary open calls but reduced the import time by more than 3X
to 28.1 minutes at 16k (see Figure 1). At 32k MPI tasks, the Python import time 

5.43 5.55
0.75 1.42

12.78 11.27

1.18

17.718.6

28.12

2.15

22.1

37.12

58.38

5.12

25.43

0

10

20

30

40

50

60

70

Executable Load Python 
import/binding

Input Mesh load Cycle time (2nd 
cycle)

T
im

e 
(i

n
 m

in
u

te
s)

Phase of KULL Startup and Execution
Figure 2: KULL Scaling Results

KULL Dawn Scaling Results 
(After extensive tuning as of June 22, 2010) 

1k  

4k ( Dual)

16k

32k (Dual)



11

increased to 58.4 minutes (Figure 2). Further reducing the Python import time is still 
being actively pursued, but its solution may require fundamentally changing the way 
Python import works, which is a fairly large code development effort. The goal is to 
drastically reduce the remaining unnecessary open calls and the Python import/bind time 
to just a few minutes.
The mesh load time (> 10.6 hours at 16k) was due to the underlying I/O library 
performing a large number of unnecessary lseeks on the file and very short reads. The 
SAP team worked with the I/O library writer, providing guidance on tools (like a Dawn-
specific compute-node strace) to see the effect of I/O library changes. After several I/O 
library iterations, the mesh load time at 16k dropped from more than 10.6 hours to 2.2 
minutes (Figure 1). At 32k MPI tasks, reading the mesh took just 5.1 minutes (Figure 2). 
It is believed that the mesh load time is now near optimal with the current Dawn I/O 
infrastructure. Due to the SAP teams analysis of I/O on Dawn even for tuned I/O, the 
decision was made to purchase hardware to double the I/O bandwidth for Dawn. The I/O 
server expansion is in progress with estimated availability in July 2010.
Figure 2 summarizes the scaling results described below for the most recent, extensively 
tuned, KULL executable as of June 22, 2010. The 1k and 16k MPI task results were run 
with 1 MPI task per node. The 4k and 32k MPI task results were run 2 MPI tasks per 
node (dual mode) because it is much easier to get 2k and 16k node allocations at this time 
due to the way Dawn is configured. Dual mode does perturb the timings somewhat 
because of more I/O and MPI switch contention, but the results are representative of what 
was seen with earlier tuned versions when using 32k nodes for 32k MPI tasks.

After the KULL startup time at 16k MPI tasks on Dawn was reduced from more than 24 
hours to around 49 minutes (as of June 22, 2010), simulation cycle time tuning began. 
Although KULL simulation cycle time at 2k was reasonable (1.4 minutes a cycle), above 
2k MPI tasks the cycle time was not acceptable (taking hours per cycle). Using the TAU 
toolset, the primary non-scaling component was found to be the solver, and further 
investigation by the solver team found it to be convergence problems. The solver iteration 
time was scaling well, but the number of iterations ballooned above 2k tasks for the input 
used, causing the 25.43 cycle time at 32k MPI tasks shown in Figure 2. At the time of 
this report (June 25, 2010), the solver scaling issues were still being worked, as well as 
continuing effort to improve performance of all aspects of KULL on Dawn.

There were several exascale lessons learned from the initial KULL BG/P porting and 
tuning effort. As with past scaling efforts, approaches that were acceptable at the old 
scale (2k MPI tasks) are not acceptable at the new scale (32k). In this case specifically, 
open() calls to non-existent files were found to be too expensive at 16k MPI tasks. These 
open() calls to non-existent files were not directly from the application but from the 
system startup code handling KULL’s shared libraries and from the Python scripting 
language layer on by KULL. The approach used by both the startup code and Python has 
the advantage of being straightforward to implement and understand, with the 
disadvantage that it does not scale. A scalable solution appears doable but requires a 
significantly more sophisticated implementation to provide the same functionality at scale 
to the user. This sophistication is worth implementing so that every application does not 
have to work around the same problems at scale.



12

Another exascale lesson learned was that most I/O libraries will have to be extensively 
tuned to read and write large chunks of data at a time, likely via aggressive internal 
caching, in order to function at extreme scale. It will no longer be possible to keep doing 
I/O the way the application has always done it and have it work acceptably. Those 
applications that don’t tune their I/O will most likely have both an extremely poor 
experience at scale and have a significant negative impact on other applications that are 
sharing the file systems with them.



13

Attachment 5: I/O Performance Analysis and 
Tuning for Dawn

This analysis is the result of discussions with several of the ASC code teams on I/O 
related issues. There were formal meetings with the Ares, KULL, and HYDRA teams 
where I/O issues were specifically addressed and informal discussions were held 
touching upon the ALE3D code.
The codes tend to have a similar architecture with regard to the I/O: each depends upon 
I/O middleware (e.g., SILO, HDF5, PDB) so that the resulting output files are self-
describing. One aspect of the self-describing file approach is that the middleware has its 
own metadata to manage, which leads to small I/O transfers that may be inserted in non-
contiguous portions of the file.

A number of the codes were profiled to assess distribution of transfer sizes. As feared, the 
number of small transfers to manage the metadata dominated the set of I/Os. In one 
representative case, 80% of transfers were under 100 bytes.
Concurrently with these meetings and analyses came the observations from the code 
teams that the I/O performance had become troublesome. This, in combination with the 
results of the analysis led us to conclude that the I/O nodes of the Sequoia system had 
become a severe bottleneck. In particular, the client side caching for the Lustre file 
system, which is so effective on the TLCC Linux clusters, could not be handled by a 
relatively weak I/O node on the Sequoia ID system, where it may need to be managing up 
to 512 I/O streams instead of the one to eight in the TLCC case.

We approached the issues from both hardware and software perspectives. For hardware, 
we doubled the I/O node count on the system. For software, we systematically worked
with the code teams so that applications would present a more optimal set of I/O transfers 
to the file system. 

An initial test was performed for the Ares code, for example, where the file was written 
in its entirety into the compute nodes physical memory, then was flushed to the file 
system. This general approach was enhanced for the Ares code by Mark Miller. He 
implemented a new custom HDF5 virtual file driver for SILO which presents large I/O 
transfers to the file system while conserving compute node memory. This led to a 
speedup for the I/O of roughly 50X for Ares. It is expected that all of these code 
improvements will apply directly to the ALE3D code. Further, analogous enhancements, 
possible for the Kull and Hydra codes, are being pursued. Aggregate improvement in I/O 
performance results for Ares are illustrated in the following figure.



14

Ares I/O Improvements Demonstrated on Sequoia I.D. System

From this evaluation there evolved a general optimization strategy applicable to the 
Sequoia ID system and to any future systems where I/O calls are forwarded from a 
compute node to a node dedicated to I/O and perhaps other system functions. This 
architecture description applies not only to Sequoia but to all anticipated future HPC 
systems at Livermore Computing. This strategy is succinctly stated as follows: assemble 
large contiguous regions of the file in memory on the compute node and forward large 
contiguous and aligned portions of the file to the I/O nodes. While there may be multiple 
ways to realize this strategy, experience has demonstrated it will be a requirement in any 
optimal I/O implementation.


